Subscribe to receive updates via email

A significant number of households in rural South Africa rely on roof-harvested rainwater (RHRW) for domestic purposes. Although, there is a general public health perception that RHRW is safe to drink, the presence of potential pathogens has been reported in this water source. Generally, the microbiological methods used to evaluate water quality depend on conventional culturing methods, which may underestimate total pathogen content and diversity and, thus limit the extent to which one can fully understand potential infectious risks from RHRW use. However, the use of high-throughput next-generation sequencing, (pyrosequencing) offers an alternative, in which detailed community structure can be achieved in combination with a fairly high taxonomic resolution. Not only does high-throughput next-generation sequencing allow for the detection and identification of dominant bacteria phylotype profiles within a sample but the high sequence numbers produced allows for the detection of rare species including pathogens within bacterial communities.

Published in Research Highlights